The tip of the Super Analog Stylus is carefully chosen from single-crystal natural diamonds. The laser-cut diamond closely resembles that of the cutting stylus used on a cutting lathe to produce the acetate master disks used in vinyl production. This allows the SAS tip to reach into the deepest recesses of the record groove in order to retrieve details which were previously inaccessible to other stylus profiles. Due to its wide contact area with the groove wall, the SAS can reproduce a more expansive bandwidth of information with higher fidelity.
In order to transmit vibrations from the stylus tip to the transducer magnet faithfully, the cantilever is supported by a specially constructed suspension. A single strand of ultra-fine piano wire is attached to the cantilever which then passes through the magnet before being secured internally to the housing. This helps to stabilize the movement of the magnet and reduce distortion from resonance that builds up as oscillations are transmitted through the cantilever, thus preserving the original signal down to the smallest detail.
To extract the maximum performance from the single point tension wire a specially shaped magnet is mounted coaxially to the cantilever. The magnet is composed of rare earth elements, the magnetic strength and reduced weight of which give it exceptional properties for use in this application.
This chart depicts several types of stylus profiles viewed head on and in cross section. Also seen are the measurements of their tip radii and the surface area in contact with the record groove wall. Profile radii (R) are measured in microns (µ). Surface area in square microns (µ2) is calculated using measurements L1 and L2. Variations in the size and shape of the stylus tip affect the amount of surface area which can be applied to the groove wall. By optimizing its curvature and reducing the minor radius, the SAS tip maximizes the contact surface area by a factor of 1.25 in comparison to other line contact styli.
This chart depicts several types of stylus profiles viewed head on and in cross section. Also seen are the measurements of their tip radii and the surface area in contact with the record groove wall. Profile radii (R) are measured in microns (µ). Surface area in square microns (µ2) is calculated using measurements L1 and L2. Variations in the size and shape of the stylus tip affect the amount of surface area which can be applied to the groove wall. By optimizing its curvature and reducing the minor radius, the SAS tip maximizes the contact surface area by a factor of 1.25 in comparison to other line contact styli.
It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using ‘Content here